Overview

Dataset statistics

Number of variables15
Number of observations20023
Missing cells36005
Missing cells (%)12.0%
Duplicate rows40
Duplicate rows (%)0.2%
Total size in memory6.0 MiB
Average record size in memory313.0 B

Variable types

DateTime1
TimeSeries11
Categorical3

Dataset

DescriptionAir Quality Data Profiling for the Research Project.
AuthorNhat Thanh, Nguyen. 🌐 Linkedin: https://www.linkedin.com/in/nnthanh
URLhttps://analytics-experience.pages.dev
Copyright(c) 🎓 AUT 🛠️ Teradata's ClearScape Analytics™ ⚡ 2024

Variable descriptions

PM10Particulate Matter (PM10) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).
PM2.5Particulate Matter (PM2.5) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).
SO2Sulfur Dioxide (SO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
NONitric Oxide (NO) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
NO2Nitrogen Dioxide (NO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
NOxNitrogen Oxide (NOx) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
COCarbon Monoxide (CO) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
AQIAQI.Air Quality Index (AQI)
Wind_SpeedWind Speed Hourly Aggregate: m/s (Metres per second)
Wind_DirWind Direction Hourly Aggregate: ° (Degrees)
Air_TempAir Temperature Hourly Aggregate: °C (Celsius)
Rel_HumidityRelative Humidity Hourly Aggregate: % (Percent)
Solar_RadSolar Radiation Hourly Aggregate: W/m² (Watts per square metre)

Timeseries statistics

Number of series11
Time series length20023
Starting point2020-05-07 00:00:00
Ending point2022-04-30 23:00:00
Period52 minutes and 4.13 seconds
2024-05-02T03:32:38.315837image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:39.971074image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Alerts

Site has constant value ""Constant
Site_Class has constant value ""Constant
Country has constant value ""Constant
Dataset has 40 (0.2%) duplicate rowsDuplicates
AQI has 3004 (15.0%) missing valuesMissing
PM10 has 3205 (16.0%) missing valuesMissing
PM2.5 has 3921 (19.6%) missing valuesMissing
SO2 has 3400 (17.0%) missing valuesMissing
NO has 3763 (18.8%) missing valuesMissing
NO2 has 3763 (18.8%) missing valuesMissing
NOx has 3764 (18.8%) missing valuesMissing
Wind_Speed has 2841 (14.2%) missing valuesMissing
Wind_Dir has 2842 (14.2%) missing valuesMissing
Air_Temp has 2817 (14.1%) missing valuesMissing
Rel_Humidity has 2685 (13.4%) missing valuesMissing
AQI is non stationaryNon stationary
PM10 is non stationaryNon stationary
PM2.5 is non stationaryNon stationary
SO2 is non stationaryNon stationary
NO is non stationaryNon stationary
NO2 is non stationaryNon stationary
NOx is non stationaryNon stationary
Wind_Speed is non stationaryNon stationary
Wind_Dir is non stationaryNon stationary
Air_Temp is non stationaryNon stationary
Rel_Humidity is non stationaryNon stationary
AQI is seasonalSeasonal
PM10 is seasonalSeasonal
PM2.5 is seasonalSeasonal
SO2 is seasonalSeasonal
NO is seasonalSeasonal
NO2 is seasonalSeasonal
NOx is seasonalSeasonal
Wind_Speed is seasonalSeasonal
Wind_Dir is seasonalSeasonal
Air_Temp is seasonalSeasonal
Rel_Humidity is seasonalSeasonal
SO2 has 2172 (10.8%) zerosZeros
NO has 210 (1.0%) zerosZeros

Reproduction

Analysis started2024-05-02 03:31:28.725189
Analysis finished2024-05-02 03:32:37.149955
Duration1 minute and 8.42 seconds
Software versionydata-profiling vv4.7.0
Download configurationconfig.json

Variables

Distinct17376
Distinct (%)86.8%
Missing0
Missing (%)0.0%
Memory size312.9 KiB
Minimum2020-05-07 00:00:00
Maximum2022-04-30 23:00:00
2024-05-02T03:32:40.683061image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:40.975070image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

AQI
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

AQI.Air Quality Index (AQI)

Distinct94
Distinct (%)0.6%
Missing3004
Missing (%)15.0%
Infinite0
Infinite (%)0.0%
Mean28.233974
Minimum0
Maximum121
Zeros2
Zeros (%)< 0.1%
Memory size312.9 KiB
2024-05-02T03:32:41.336814image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile14
Q122
median27
Q333
95-th percentile45
Maximum121
Range121
Interquartile range (IQR)11

Descriptive statistics

Standard deviation9.6933119
Coefficient of variation (CV)0.34332085
Kurtosis4.0512777
Mean28.233974
Median Absolute Deviation (MAD)6
Skewness1.012542
Sum480514
Variance93.960296
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value2.076788662 × 10-25
2024-05-02T03:32:41.729424image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:42.760357image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps15
min3 hours
max5 days and 16 hours
mean1 day and 20 minutes
std1 day, 14 hours and 55 minutes
2024-05-02T03:32:43.026255image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
24 839
 
4.2%
28 831
 
4.2%
25 831
 
4.2%
26 815
 
4.1%
29 785
 
3.9%
27 765
 
3.8%
23 725
 
3.6%
30 691
 
3.5%
22 662
 
3.3%
31 647
 
3.2%
Other values (84) 9428
47.1%
(Missing) 3004
 
15.0%
ValueCountFrequency (%)
0 2
 
< 0.1%
1 25
0.1%
2 12
 
0.1%
3 5
 
< 0.1%
4 7
 
< 0.1%
5 9
 
< 0.1%
6 6
 
< 0.1%
7 8
 
< 0.1%
8 32
0.2%
9 58
0.3%
ValueCountFrequency (%)
121 1
 
< 0.1%
117 1
 
< 0.1%
113 1
 
< 0.1%
110 1
 
< 0.1%
109 1
 
< 0.1%
88 2
 
< 0.1%
87 4
< 0.1%
86 3
< 0.1%
85 2
 
< 0.1%
84 5
< 0.1%
2024-05-02T03:32:42.331460image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

PM10
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Particulate Matter (PM10) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).

Distinct512
Distinct (%)3.0%
Missing3205
Missing (%)16.0%
Infinite0
Infinite (%)0.0%
Mean13.881787
Minimum-6.4
Maximum196.7
Zeros12
Zeros (%)0.1%
Memory size312.9 KiB
2024-05-02T03:32:43.372537image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-6.4
5-th percentile2.8
Q18.4
median13.1
Q318.4
95-th percentile27.6
Maximum196.7
Range203.1
Interquartile range (IQR)10

Descriptive statistics

Standard deviation8.044288
Coefficient of variation (CV)0.57948503
Kurtosis28.574515
Mean13.881787
Median Absolute Deviation (MAD)5
Skewness2.054201
Sum233463.9
Variance64.71057
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value5.386803213 × 10-26
2024-05-02T03:32:43.696411image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:44.834847image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps33
min3 hours
max5 days
mean12 hours, 54 minutes and 33.45 seconds
std22 hours, 12 minutes and 30.03 seconds
2024-05-02T03:32:45.326921image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
11.6 113
 
0.6%
12.2 109
 
0.5%
13.4 107
 
0.5%
14.1 106
 
0.5%
12.3 105
 
0.5%
10.8 105
 
0.5%
11.4 104
 
0.5%
14.3 103
 
0.5%
10.9 101
 
0.5%
10 101
 
0.5%
Other values (502) 15764
78.7%
(Missing) 3205
 
16.0%
ValueCountFrequency (%)
-6.4 1
 
< 0.1%
-6 1
 
< 0.1%
-5.7 1
 
< 0.1%
-5.5 2
< 0.1%
-4.9 1
 
< 0.1%
-4.8 1
 
< 0.1%
-4.7 1
 
< 0.1%
-4.6 1
 
< 0.1%
-4.5 2
< 0.1%
-4.4 3
< 0.1%
ValueCountFrequency (%)
196.7 1
< 0.1%
178.2 1
< 0.1%
94.5 1
< 0.1%
83.9 1
< 0.1%
82.9 1
< 0.1%
72 1
< 0.1%
64.6 1
< 0.1%
63.8 1
< 0.1%
63.2 1
< 0.1%
61.1 1
< 0.1%
2024-05-02T03:32:44.337805image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

PM2.5
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Particulate Matter (PM2.5) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).

Distinct380
Distinct (%)2.4%
Missing3921
Missing (%)19.6%
Infinite0
Infinite (%)0.0%
Mean5.3481804
Minimum-12.3
Maximum138.4
Zeros63
Zeros (%)0.3%
Memory size312.9 KiB
2024-05-02T03:32:46.090399image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-12.3
5-th percentile-1.5
Q12.1
median4.7
Q37.7
95-th percentile14.7
Maximum138.4
Range150.7
Interquartile range (IQR)5.6

Descriptive statistics

Standard deviation5.2593346
Coefficient of variation (CV)0.98338766
Kurtosis39.102893
Mean5.3481804
Median Absolute Deviation (MAD)2.7
Skewness2.8029107
Sum86116.4
Variance27.6606
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value1.347436773 × 10-25
2024-05-02T03:32:46.436224image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:47.631255image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps88
min3 hours
max6 days and 23 hours
mean12 hours, 55 minutes and 14.27 seconds
std1 day, 9 hours and 17 minutes
2024-05-02T03:32:48.524403image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
3.9 191
 
1.0%
3.7 186
 
0.9%
3.8 184
 
0.9%
4.7 177
 
0.9%
5 177
 
0.9%
4.9 176
 
0.9%
2.5 172
 
0.9%
3.5 171
 
0.9%
3.1 170
 
0.8%
4.6 169
 
0.8%
Other values (370) 14329
71.6%
(Missing) 3921
 
19.6%
ValueCountFrequency (%)
-12.3 1
 
< 0.1%
-9.7 1
 
< 0.1%
-8.3 1
 
< 0.1%
-7.6 1
 
< 0.1%
-7.4 2
< 0.1%
-7.3 1
 
< 0.1%
-7.1 1
 
< 0.1%
-7 3
< 0.1%
-6.8 1
 
< 0.1%
-6.7 2
< 0.1%
ValueCountFrequency (%)
138.4 1
< 0.1%
94.6 1
< 0.1%
93.3 1
< 0.1%
51 2
< 0.1%
45.6 1
< 0.1%
44.9 1
< 0.1%
44.2 1
< 0.1%
42.2 1
< 0.1%
40.4 1
< 0.1%
40 2
< 0.1%
2024-05-02T03:32:47.132123image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

SO2
Numeric time series

MISSING  NON STATIONARY  SEASONAL  ZEROS 

Sulfur Dioxide (SO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct162
Distinct (%)1.0%
Missing3400
Missing (%)17.0%
Infinite0
Infinite (%)0.0%
Mean0.85163929
Minimum-4.4
Maximum25.2
Zeros2172
Zeros (%)10.8%
Memory size312.9 KiB
2024-05-02T03:32:49.004029image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-4.4
5-th percentile-0.2
Q10.1
median0.5
Q31
95-th percentile3
Maximum25.2
Range29.6
Interquartile range (IQR)0.9

Descriptive statistics

Standard deviation1.5076537
Coefficient of variation (CV)1.7702961
Kurtosis42.542706
Mean0.85163929
Median Absolute Deviation (MAD)0.5
Skewness5.2830923
Sum14156.8
Variance2.2730197
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value4.725986082 × 10-21
2024-05-02T03:32:49.382540image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:50.392613image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps186
min3 hours
max4 days and 1 hour
mean3 hours, 45 minutes and 29.06 seconds
std7 hours, 1 minute and 16.98 seconds
2024-05-02T03:32:50.998760image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
0 2172
 
10.8%
0.1 1214
 
6.1%
0.6 997
 
5.0%
0.5 964
 
4.8%
0.7 899
 
4.5%
0.4 882
 
4.4%
-0.1 881
 
4.4%
0.8 812
 
4.1%
0.9 797
 
4.0%
0.3 778
 
3.9%
Other values (152) 6227
31.1%
(Missing) 3400
17.0%
ValueCountFrequency (%)
-4.4 1
 
< 0.1%
-1.2 1
 
< 0.1%
-1.1 1
 
< 0.1%
-1 2
 
< 0.1%
-0.9 1
 
< 0.1%
-0.8 1
 
< 0.1%
-0.7 9
 
< 0.1%
-0.6 22
 
0.1%
-0.5 52
0.3%
-0.4 123
0.6%
ValueCountFrequency (%)
25.2 2
< 0.1%
19.6 1
< 0.1%
19.5 1
< 0.1%
19.4 1
< 0.1%
19.3 1
< 0.1%
19.2 1
< 0.1%
17.6 2
< 0.1%
17.5 1
< 0.1%
17.4 2
< 0.1%
17.2 1
< 0.1%
2024-05-02T03:32:49.917578image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

NO
Numeric time series

MISSING  NON STATIONARY  SEASONAL  ZEROS 

Nitric Oxide (NO) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct912
Distinct (%)5.6%
Missing3763
Missing (%)18.8%
Infinite0
Infinite (%)0.0%
Mean10.041562
Minimum-1.9
Maximum378.4
Zeros210
Zeros (%)1.0%
Memory size312.9 KiB
2024-05-02T03:32:51.713644image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-1.9
5-th percentile0.1
Q10.8
median3.6
Q310.9
95-th percentile38.305
Maximum378.4
Range380.3
Interquartile range (IQR)10.1

Descriptive statistics

Standard deviation21.065762
Coefficient of variation (CV)2.0978571
Kurtosis61.85333
Mean10.041562
Median Absolute Deviation (MAD)3.2
Skewness6.4157851
Sum163275.8
Variance443.76635
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value8.408122945 × 10-29
2024-05-02T03:32:52.027433image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:53.112079image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps24
min3 hours
max2 weeks, 2 days and 14 hours
mean1 day, 5 hours and 45 minutes
std3 days, 10 hours and 21 minutes
2024-05-02T03:32:53.417479image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
0.4 579
 
2.9%
0.3 517
 
2.6%
0.5 482
 
2.4%
0.6 420
 
2.1%
0.7 389
 
1.9%
0.2 380
 
1.9%
0.8 318
 
1.6%
0.9 291
 
1.5%
1 282
 
1.4%
0.1 277
 
1.4%
Other values (902) 12325
61.6%
(Missing) 3763
 
18.8%
ValueCountFrequency (%)
-1.9 1
 
< 0.1%
-1.8 1
 
< 0.1%
-1.7 1
 
< 0.1%
-1.6 3
< 0.1%
-1.5 4
< 0.1%
-1.4 3
< 0.1%
-1.3 1
 
< 0.1%
-1.2 1
 
< 0.1%
-0.9 3
< 0.1%
-0.8 2
< 0.1%
ValueCountFrequency (%)
378.4 1
< 0.1%
351.4 1
< 0.1%
351 1
< 0.1%
308.2 1
< 0.1%
308.1 1
< 0.1%
302.4 1
< 0.1%
297.8 1
< 0.1%
294.2 1
< 0.1%
289 1
< 0.1%
288.7 1
< 0.1%
2024-05-02T03:32:52.655784image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

NO2
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Nitrogen Dioxide (NO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct648
Distinct (%)4.0%
Missing3763
Missing (%)18.8%
Infinite0
Infinite (%)0.0%
Mean14.123253
Minimum-1.4
Maximum83.1
Zeros55
Zeros (%)0.3%
Memory size312.9 KiB
2024-05-02T03:32:53.767293image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-1.4
5-th percentile0.9
Q13.9
median10.6
Q320.7
95-th percentile40
Maximum83.1
Range84.5
Interquartile range (IQR)16.8

Descriptive statistics

Standard deviation12.748169
Coefficient of variation (CV)0.90263686
Kurtosis1.5392652
Mean14.123253
Median Absolute Deviation (MAD)7.6
Skewness1.2818399
Sum229644.1
Variance162.51582
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value1.741338552 × 10-19
2024-05-02T03:32:54.066422image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:55.100263image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps24
min3 hours
max2 weeks, 2 days and 14 hours
mean1 day, 5 hours and 45 minutes
std3 days, 10 hours and 21 minutes
2024-05-02T03:32:55.407725image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
1.2 149
 
0.7%
1.4 142
 
0.7%
1.6 137
 
0.7%
1.3 136
 
0.7%
1.7 136
 
0.7%
1 132
 
0.7%
1.5 131
 
0.7%
1.8 125
 
0.6%
2.7 124
 
0.6%
2 117
 
0.6%
Other values (638) 14931
74.6%
(Missing) 3763
 
18.8%
ValueCountFrequency (%)
-1.4 1
 
< 0.1%
-0.7 2
 
< 0.1%
-0.6 1
 
< 0.1%
-0.5 6
 
< 0.1%
-0.4 7
 
< 0.1%
-0.3 14
 
0.1%
-0.2 22
 
0.1%
-0.1 50
0.2%
0 55
0.3%
0.1 52
0.3%
ValueCountFrequency (%)
83.1 1
< 0.1%
80.1 1
< 0.1%
79.5 1
< 0.1%
79.3 1
< 0.1%
76.7 2
< 0.1%
76.6 1
< 0.1%
75.8 1
< 0.1%
75.4 1
< 0.1%
73.8 1
< 0.1%
72.8 1
< 0.1%
2024-05-02T03:32:54.653883image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

NOx
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Nitrogen Oxide (NOx) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct1315
Distinct (%)8.1%
Missing3764
Missing (%)18.8%
Infinite0
Infinite (%)0.0%
Mean24.15135
Minimum-1.3
Maximum455.1
Zeros28
Zeros (%)0.1%
Memory size312.9 KiB
2024-05-02T03:32:55.769394image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-1.3
5-th percentile1.3
Q15.1
median14.9
Q331.65
95-th percentile75.7
Maximum455.1
Range456.4
Interquartile range (IQR)26.55

Descriptive statistics

Standard deviation30.956155
Coefficient of variation (CV)1.2817567
Kurtosis27.364772
Mean24.15135
Median Absolute Deviation (MAD)11.3
Skewness3.995884
Sum392676.8
Variance958.28352
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value1.812975827 × 10-23
2024-05-02T03:32:56.080783image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:57.025115image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps24
min3 hours
max2 weeks, 2 days and 14 hours
mean1 day, 5 hours and 45 minutes
std3 days, 10 hours and 21 minutes
2024-05-02T03:32:57.307128image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
1.6 120
 
0.6%
1.8 117
 
0.6%
2.1 116
 
0.6%
2.2 111
 
0.6%
1.7 110
 
0.5%
1.2 108
 
0.5%
1.9 104
 
0.5%
1.5 103
 
0.5%
2.6 100
 
0.5%
2.9 98
 
0.5%
Other values (1305) 15172
75.8%
(Missing) 3764
 
18.8%
ValueCountFrequency (%)
-1.3 1
 
< 0.1%
-1.1 1
 
< 0.1%
-1 2
 
< 0.1%
-0.8 1
 
< 0.1%
-0.7 3
 
< 0.1%
-0.6 5
 
< 0.1%
-0.5 6
 
< 0.1%
-0.4 11
0.1%
-0.3 13
0.1%
-0.2 18
0.1%
ValueCountFrequency (%)
455.1 1
< 0.1%
417.4 1
< 0.1%
403.6 1
< 0.1%
387.6 1
< 0.1%
368.7 1
< 0.1%
361.8 1
< 0.1%
358.9 1
< 0.1%
357.8 1
< 0.1%
357.2 1
< 0.1%
353.5 1
< 0.1%
2024-05-02T03:32:56.589510image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Wind_Speed
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Wind Speed Hourly Aggregate: m/s (Metres per second)

Distinct79
Distinct (%)0.5%
Missing2841
Missing (%)14.2%
Infinite0
Infinite (%)0.0%
Mean2.8073682
Minimum0.2
Maximum8.2
Zeros0
Zeros (%)0.0%
Memory size312.9 KiB
2024-05-02T03:32:58.328833image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0.2
5-th percentile0.7
Q11.6
median2.6
Q33.8
95-th percentile5.7
Maximum8.2
Range8
Interquartile range (IQR)2.2

Descriptive statistics

Standard deviation1.5386155
Coefficient of variation (CV)0.5480633
Kurtosis-0.36816051
Mean2.8073682
Median Absolute Deviation (MAD)1.1
Skewness0.5605372
Sum48236.2
Variance2.3673376
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value1.14825955 × 10-22
2024-05-02T03:32:58.697844image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:32:59.644493image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps13
min3 hours
max5 days and 10 hours
mean13 hours, 32 minutes and 18.92 seconds
std1 day, 11 hours and 48.25 seconds
2024-05-02T03:32:59.978583image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
0.9 437
 
2.2%
1.6 429
 
2.1%
1.8 427
 
2.1%
2.1 425
 
2.1%
1.3 424
 
2.1%
2 424
 
2.1%
1.7 420
 
2.1%
2.4 418
 
2.1%
2.3 417
 
2.1%
2.5 413
 
2.1%
Other values (69) 12948
64.7%
(Missing) 2841
 
14.2%
ValueCountFrequency (%)
0.2 7
 
< 0.1%
0.3 36
 
0.2%
0.4 104
 
0.5%
0.5 193
1.0%
0.6 299
1.5%
0.7 350
1.7%
0.8 402
2.0%
0.9 437
2.2%
1 404
2.0%
1.1 410
2.0%
ValueCountFrequency (%)
8.2 1
 
< 0.1%
8 1
 
< 0.1%
7.8 4
 
< 0.1%
7.7 5
 
< 0.1%
7.6 9
< 0.1%
7.5 2
 
< 0.1%
7.4 9
< 0.1%
7.3 9
< 0.1%
7.2 11
0.1%
7.1 15
0.1%
2024-05-02T03:32:59.165108image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Wind_Dir
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Wind Direction Hourly Aggregate: ° (Degrees)

Distinct356
Distinct (%)2.1%
Missing2842
Missing (%)14.2%
Infinite0
Infinite (%)0.0%
Mean173.23439
Minimum1
Maximum357
Zeros0
Zeros (%)0.0%
Memory size312.9 KiB
2024-05-02T03:33:00.335347image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile21
Q173
median211
Q3235
95-th percentile310
Maximum357
Range356
Interquartile range (IQR)162

Descriptive statistics

Standard deviation94.038611
Coefficient of variation (CV)0.54284033
Kurtosis-1.1374481
Mean173.23439
Median Absolute Deviation (MAD)63
Skewness-0.28138618
Sum2976340
Variance8843.2604
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value5.598877283 × 10-27
2024-05-02T03:33:00.705950image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:33:01.814124image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps13
min3 hours
max5 days and 10 hours
mean13 hours, 32 minutes and 18.92 seconds
std1 day, 11 hours and 48.25 seconds
2024-05-02T03:33:02.128954image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
218 228
 
1.1%
219 211
 
1.1%
215 199
 
1.0%
214 197
 
1.0%
213 195
 
1.0%
220 190
 
0.9%
222 182
 
0.9%
224 180
 
0.9%
216 180
 
0.9%
212 177
 
0.9%
Other values (346) 15242
76.1%
(Missing) 2842
 
14.2%
ValueCountFrequency (%)
1 1
 
< 0.1%
3 6
 
< 0.1%
4 13
 
0.1%
5 15
 
0.1%
6 29
0.1%
7 37
0.2%
8 30
0.1%
9 37
0.2%
10 39
0.2%
11 42
0.2%
ValueCountFrequency (%)
357 5
 
< 0.1%
356 3
 
< 0.1%
355 2
 
< 0.1%
354 9
< 0.1%
353 14
0.1%
352 13
0.1%
351 11
0.1%
350 16
0.1%
349 14
0.1%
348 17
0.1%
2024-05-02T03:33:01.332245image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Air_Temp
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Air Temperature Hourly Aggregate: °C (Celsius)

Distinct26
Distinct (%)0.2%
Missing2817
Missing (%)14.1%
Infinite0
Infinite (%)0.0%
Mean16.748925
Minimum3
Maximum28
Zeros0
Zeros (%)0.0%
Memory size312.9 KiB
2024-05-02T03:33:02.514853image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum3
5-th percentile10
Q114
median17
Q320
95-th percentile23
Maximum28
Range25
Interquartile range (IQR)6

Descriptive statistics

Standard deviation4.0137757
Coefficient of variation (CV)0.23964378
Kurtosis-0.40990544
Mean16.748925
Median Absolute Deviation (MAD)3
Skewness-0.10672096
Sum288182
Variance16.110396
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value0.0005753663001
2024-05-02T03:33:02.876431image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=26)
2024-05-02T03:33:03.813567image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps8
min3 hours
max5 days and 10 hours
mean19 hours, 22 minutes and 30 seconds
std1 day, 20 hours and 43 minutes
2024-05-02T03:33:04.068063image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
14 1573
7.9%
15 1546
7.7%
16 1486
 
7.4%
20 1445
 
7.2%
19 1431
 
7.1%
18 1376
 
6.9%
17 1351
 
6.7%
13 1166
 
5.8%
21 1143
 
5.7%
12 942
 
4.7%
Other values (16) 3747
18.7%
(Missing) 2817
14.1%
ValueCountFrequency (%)
3 5
 
< 0.1%
4 15
 
0.1%
5 26
 
0.1%
6 44
 
0.2%
7 102
 
0.5%
8 140
 
0.7%
9 245
 
1.2%
10 410
2.0%
11 624
3.1%
12 942
4.7%
ValueCountFrequency (%)
28 1
 
< 0.1%
27 11
 
0.1%
26 67
 
0.3%
25 227
 
1.1%
24 407
 
2.0%
23 617
3.1%
22 806
4.0%
21 1143
5.7%
20 1445
7.2%
19 1431
7.1%
2024-05-02T03:33:03.374953image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Rel_Humidity
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Relative Humidity Hourly Aggregate: % (Percent)

Distinct564
Distinct (%)3.3%
Missing2685
Missing (%)13.4%
Infinite0
Infinite (%)0.0%
Mean69.426087
Minimum26.9
Maximum92
Zeros0
Zeros (%)0.0%
Memory size312.9 KiB
2024-05-02T03:33:04.404964image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum26.9
5-th percentile48.2
Q160.2
median70.4
Q379.5
95-th percentile87.5
Maximum92
Range65.1
Interquartile range (IQR)19.3

Descriptive statistics

Standard deviation12.29075
Coefficient of variation (CV)0.17703359
Kurtosis-0.75457035
Mean69.426087
Median Absolute Deviation (MAD)9.5
Skewness-0.30505746
Sum1203709.5
Variance151.06252
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value1.955478153 × 10-18
2024-05-02T03:33:04.737679image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:33:05.693402image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps7
min3 hours
max7 hours
mean3 hours, 34 minutes and 17.29 seconds
std1 hour, 30 minutes and 43.38 seconds
2024-05-02T03:33:05.954252image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
79.6 67
 
0.3%
76.9 65
 
0.3%
72.7 63
 
0.3%
80.7 61
 
0.3%
71.3 60
 
0.3%
63.4 60
 
0.3%
68.3 60
 
0.3%
81.5 60
 
0.3%
82.6 60
 
0.3%
80.1 60
 
0.3%
Other values (554) 16722
83.5%
(Missing) 2685
 
13.4%
ValueCountFrequency (%)
26.9 2
< 0.1%
29.2 1
< 0.1%
29.6 1
< 0.1%
30.4 1
< 0.1%
30.6 1
< 0.1%
31.2 1
< 0.1%
31.9 1
< 0.1%
32.8 1
< 0.1%
33.1 1
< 0.1%
33.3 2
< 0.1%
ValueCountFrequency (%)
92 1
 
< 0.1%
91.4 4
 
< 0.1%
91.3 7
< 0.1%
91.2 1
 
< 0.1%
91.1 5
 
< 0.1%
91 4
 
< 0.1%
90.9 4
 
< 0.1%
90.8 6
 
< 0.1%
90.7 9
< 0.1%
90.6 17
0.1%
2024-05-02T03:33:05.254405image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Site
Categorical

CONSTANT 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size1.4 MiB
Penrose
20023 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters140161
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowPenrose
2nd rowPenrose
3rd rowPenrose
4th rowPenrose
5th rowPenrose

Common Values

ValueCountFrequency (%)
Penrose 20023
100.0%

Length

2024-05-02T03:33:06.228013image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-05-02T03:33:06.424910image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
penrose 20023
100.0%

Most occurring characters

ValueCountFrequency (%)
e 40046
28.6%
P 20023
14.3%
n 20023
14.3%
r 20023
14.3%
o 20023
14.3%
s 20023
14.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 140161
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 40046
28.6%
P 20023
14.3%
n 20023
14.3%
r 20023
14.3%
o 20023
14.3%
s 20023
14.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 140161
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 40046
28.6%
P 20023
14.3%
n 20023
14.3%
r 20023
14.3%
o 20023
14.3%
s 20023
14.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 140161
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 40046
28.6%
P 20023
14.3%
n 20023
14.3%
r 20023
14.3%
o 20023
14.3%
s 20023
14.3%

Site_Class
Categorical

CONSTANT 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size1.6 MiB
Industrial / Traffic
20023 

Length

Max length20
Median length20
Mean length20
Min length20

Characters and Unicode

Total characters400460
Distinct characters15
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowIndustrial / Traffic
2nd rowIndustrial / Traffic
3rd rowIndustrial / Traffic
4th rowIndustrial / Traffic
5th rowIndustrial / Traffic

Common Values

ValueCountFrequency (%)
Industrial / Traffic 20023
100.0%

Length

2024-05-02T03:33:06.574710image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-05-02T03:33:06.768567image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
industrial 20023
33.3%
20023
33.3%
traffic 20023
33.3%

Most occurring characters

ValueCountFrequency (%)
r 40046
 
10.0%
i 40046
 
10.0%
a 40046
 
10.0%
40046
 
10.0%
f 40046
 
10.0%
I 20023
 
5.0%
n 20023
 
5.0%
d 20023
 
5.0%
u 20023
 
5.0%
s 20023
 
5.0%
Other values (5) 100115
25.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 400460
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
r 40046
 
10.0%
i 40046
 
10.0%
a 40046
 
10.0%
40046
 
10.0%
f 40046
 
10.0%
I 20023
 
5.0%
n 20023
 
5.0%
d 20023
 
5.0%
u 20023
 
5.0%
s 20023
 
5.0%
Other values (5) 100115
25.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 400460
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
r 40046
 
10.0%
i 40046
 
10.0%
a 40046
 
10.0%
40046
 
10.0%
f 40046
 
10.0%
I 20023
 
5.0%
n 20023
 
5.0%
d 20023
 
5.0%
u 20023
 
5.0%
s 20023
 
5.0%
Other values (5) 100115
25.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 400460
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
r 40046
 
10.0%
i 40046
 
10.0%
a 40046
 
10.0%
40046
 
10.0%
f 40046
 
10.0%
I 20023
 
5.0%
n 20023
 
5.0%
d 20023
 
5.0%
u 20023
 
5.0%
s 20023
 
5.0%
Other values (5) 100115
25.0%

Country
Categorical

CONSTANT 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size1.5 MiB
New Zealand
20023 

Length

Max length11
Median length11
Mean length11
Min length11

Characters and Unicode

Total characters220253
Distinct characters9
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowNew Zealand
2nd rowNew Zealand
3rd rowNew Zealand
4th rowNew Zealand
5th rowNew Zealand

Common Values

ValueCountFrequency (%)
New Zealand 20023
100.0%

Length

2024-05-02T03:33:06.917530image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-05-02T03:33:07.131438image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
new 20023
50.0%
zealand 20023
50.0%

Most occurring characters

ValueCountFrequency (%)
e 40046
18.2%
a 40046
18.2%
N 20023
9.1%
w 20023
9.1%
20023
9.1%
Z 20023
9.1%
l 20023
9.1%
n 20023
9.1%
d 20023
9.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 220253
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 40046
18.2%
a 40046
18.2%
N 20023
9.1%
w 20023
9.1%
20023
9.1%
Z 20023
9.1%
l 20023
9.1%
n 20023
9.1%
d 20023
9.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 220253
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 40046
18.2%
a 40046
18.2%
N 20023
9.1%
w 20023
9.1%
20023
9.1%
Z 20023
9.1%
l 20023
9.1%
n 20023
9.1%
d 20023
9.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 220253
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 40046
18.2%
a 40046
18.2%
N 20023
9.1%
w 20023
9.1%
20023
9.1%
Z 20023
9.1%
l 20023
9.1%
n 20023
9.1%
d 20023
9.1%

Interactions

2024-05-02T03:32:32.215433image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:07.044971image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:09.314961image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:11.658522image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:14.307402image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:16.740147image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:19.145872image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:21.745378image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:23.973971image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:26.311247image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:28.695370image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:32.555335image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:07.265429image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:09.503916image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:11.912233image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:14.497579image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:16.988248image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:19.351419image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:21.953782image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:24.228417image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:26.621327image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:28.884244image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:32.843609image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:07.450833image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:09.728913image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:12.119431image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:14.715565image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:17.198366image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:19.541617image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:22.153033image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:24.458989image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:26.826737image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:29.079364image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:33.194971image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:07.661820image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:09.942789image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:12.534116image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:14.912646image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:17.393265image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:19.795120image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:22.352281image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:24.670990image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:27.064609image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:29.267651image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:33.558579image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:07.859134image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:10.132783image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:12.773287image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:15.194519image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:17.640512image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:19.983126image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:22.552685image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:24.868468image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:27.259765image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:29.450058image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:33.871528image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:08.065434image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:10.326948image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:12.990072image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:15.423972image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:17.869583image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:20.443302image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:22.768412image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:25.103046image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:27.454770image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:30.093491image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:34.217259image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:08.259849image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:10.540571image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:13.225663image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:15.629084image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:18.060471image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:20.657415image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:22.971748image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:25.284655image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:27.639604image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:30.494724image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:34.548869image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:08.469575image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:10.722575image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:13.458738image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:15.849945image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:18.251773image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:20.832355image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:23.161105image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:25.519606image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:27.875908image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:30.839741image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:34.824711image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:08.672770image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:10.933840image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:13.669955image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:16.054980image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:18.484323image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:21.026072image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:23.365958image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:25.726233image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:28.083707image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:31.211267image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:35.098789image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:08.870358image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:11.230008image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:13.873988image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:16.341830image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:18.731634image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:21.272014image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:23.560116image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:25.931540image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:28.303101image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:31.592127image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:35.329420image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:09.075813image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:11.436696image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:14.098736image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:16.533908image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:18.926355image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:21.536372image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:23.744262image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:26.116475image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:28.500010image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:32:31.925410image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Missing values

2024-05-02T03:32:35.651277image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
A simple visualization of nullity by column.
2024-05-02T03:32:36.172476image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2024-05-02T03:32:36.706579image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

TimestampAQIPM10PM2.5SO2NONO2NOxWind_SpeedWind_DirAir_TempRel_HumiditySiteSite_ClassCountry
2020-05-07 00:00:002020-05-07 00:00:0026.016.516.11.860.340.9101.20.6316.08.078.0PenroseIndustrial / TrafficNew Zealand
2020-05-07 01:00:002020-05-07 01:00:0028.017.710.11.0NaNNaNNaN0.7269.08.076.8PenroseIndustrial / TrafficNew Zealand
2020-05-07 02:00:002020-05-07 02:00:0028.015.010.30.116.029.245.31.0180.08.078.4PenroseIndustrial / TrafficNew Zealand
2020-05-07 03:00:002020-05-07 03:00:0029.014.311.40.011.227.538.70.8232.08.077.5PenroseIndustrial / TrafficNew Zealand
2020-05-07 04:00:002020-05-07 04:00:0030.08.810.6-0.112.028.540.50.8274.07.080.1PenroseIndustrial / TrafficNew Zealand
2020-05-07 05:00:002020-05-07 05:00:0030.07.36.90.011.724.235.91.0235.06.083.5PenroseIndustrial / TrafficNew Zealand
2020-05-07 06:00:002020-05-07 06:00:0030.010.78.30.117.024.041.01.0289.07.083.7PenroseIndustrial / TrafficNew Zealand
2020-05-07 07:00:002020-05-07 07:00:0031.05.27.10.732.929.462.30.9290.08.081.3PenroseIndustrial / TrafficNew Zealand
2020-05-07 08:00:002020-05-07 08:00:0030.012.27.51.149.647.897.50.8332.011.081.4PenroseIndustrial / TrafficNew Zealand
2020-05-07 09:00:002020-05-07 09:00:0030.012.09.51.250.946.497.31.4267.013.084.8PenroseIndustrial / TrafficNew Zealand
TimestampAQIPM10PM2.5SO2NONO2NOxWind_SpeedWind_DirAir_TempRel_HumiditySiteSite_ClassCountry
2022-04-30 18:00:002022-04-30 18:00:0026.014.00.60.40.13.03.22.376.017.071.3PenroseIndustrial / TrafficNew Zealand
2022-04-30 18:00:002022-04-30 18:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand
2022-04-30 19:00:002022-04-30 19:00:0025.0NaN-0.20.30.14.84.92.195.016.080.5PenroseIndustrial / TrafficNew Zealand
2022-04-30 19:00:002022-04-30 19:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand
2022-04-30 20:00:002022-04-30 20:00:0025.02.22.20.20.59.910.31.0116.015.084.2PenroseIndustrial / TrafficNew Zealand
2022-04-30 20:00:002022-04-30 20:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand
2022-04-30 21:00:002022-04-30 21:00:0024.0NaN1.90.65.825.431.30.8124.015.085.4PenroseIndustrial / TrafficNew Zealand
2022-04-30 21:00:002022-04-30 21:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand
2022-04-30 22:00:002022-04-30 22:00:0024.08.26.00.51.817.919.70.8108.014.086.0PenroseIndustrial / TrafficNew Zealand
2022-04-30 23:00:002022-04-30 23:00:0024.02.35.40.51.07.38.30.993.014.084.4PenroseIndustrial / TrafficNew Zealand

Duplicate rows

Most frequently occurring

TimestampAQIPM10PM2.5SO2NONO2NOxWind_SpeedWind_DirAir_TempRel_HumiditySiteSite_ClassCountry# duplicates
02020-05-19 01:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
12020-05-26 00:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
22020-06-19 13:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
32020-11-06 01:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
42020-11-07 00:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
52020-12-11 14:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
62021-02-10 17:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
72021-02-16 09:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
82021-03-08 02:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2
92021-03-13 00:00:00NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNPenroseIndustrial / TrafficNew Zealand2