Overview

Dataset statistics

Number of variables15
Number of observations17359
Missing cells25395
Missing cells (%)9.8%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory5.1 MiB
Average record size in memory310.0 B

Variable types

DateTime1
TimeSeries10
Unsupported1
Categorical3

Dataset

DescriptionAir Quality Data Profiling for the Research Project.
AuthorNhat Thanh, Nguyen. 🌐 Linkedin: https://www.linkedin.com/in/nnthanh
URLhttps://analytics-experience.pages.dev
Copyright(c) 🎓 AUT 🛠️ Teradata's ClearScape Analytics™ ⚡ 2024

Variable descriptions

PM10Particulate Matter (PM10) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).
PM2.5Particulate Matter (PM2.5) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).
SO2Sulfur Dioxide (SO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
NONitric Oxide (NO) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
NO2Nitrogen Dioxide (NO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
NOxNitrogen Oxide (NOx) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
COCarbon Monoxide (CO) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)
AQIAQI.Air Quality Index (AQI)
Wind_SpeedWind Speed Hourly Aggregate: m/s (Metres per second)
Wind_DirWind Direction Hourly Aggregate: ° (Degrees)
Air_TempAir Temperature Hourly Aggregate: °C (Celsius)
Rel_HumidityRelative Humidity Hourly Aggregate: % (Percent)
Solar_RadSolar Radiation Hourly Aggregate: W/m² (Watts per square metre)

Timeseries statistics

Number of series10
Time series length17359
Starting point2020-05-07 17:00:00
Ending point2022-04-30 23:00:00
Period1 hour
2024-05-02T03:34:13.871855image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:15.825939image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Alerts

Site has constant value ""Constant
Site_Class has constant value ""Constant
Country has constant value ""Constant
PM10 has 780 (4.5%) missing valuesMissing
PM2.5 has 1552 (8.9%) missing valuesMissing
SO2 has 17359 (100.0%) missing valuesMissing
NO has 1172 (6.8%) missing valuesMissing
NO2 has 1174 (6.8%) missing valuesMissing
NOx has 1172 (6.8%) missing valuesMissing
Wind_Speed has 586 (3.4%) missing valuesMissing
Wind_Dir has 588 (3.4%) missing valuesMissing
Air_Temp has 574 (3.3%) missing valuesMissing
Rel_Humidity has 438 (2.5%) missing valuesMissing
AQI is non stationaryNon stationary
PM10 is non stationaryNon stationary
PM2.5 is non stationaryNon stationary
NO is non stationaryNon stationary
NO2 is non stationaryNon stationary
NOx is non stationaryNon stationary
Wind_Speed is non stationaryNon stationary
Wind_Dir is non stationaryNon stationary
Air_Temp is non stationaryNon stationary
Rel_Humidity is non stationaryNon stationary
AQI is seasonalSeasonal
PM10 is seasonalSeasonal
PM2.5 is seasonalSeasonal
NO is seasonalSeasonal
NO2 is seasonalSeasonal
NOx is seasonalSeasonal
Wind_Speed is seasonalSeasonal
Wind_Dir is seasonalSeasonal
Air_Temp is seasonalSeasonal
Rel_Humidity is seasonalSeasonal
Timestamp has unique valuesUnique
SO2 is an unsupported type, check if it needs cleaning or further analysisUnsupported

Reproduction

Analysis started2024-05-02 03:33:14.217676
Analysis finished2024-05-02 03:34:13.147928
Duration58.93 seconds
Software versionydata-profiling vv4.7.0
Download configurationconfig.json

Variables

Timestamp
Date

UNIQUE 

Distinct17359
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Memory size271.2 KiB
Minimum2020-05-07 17:00:00
Maximum2022-04-30 23:00:00
2024-05-02T03:34:16.381119image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:16.675839image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

AQI
Numeric time series

NON STATIONARY  SEASONAL 

AQI.Air Quality Index (AQI)

Distinct101
Distinct (%)0.6%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean25.152947
Minimum-13
Maximum318
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:17.117382image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-13
5-th percentile12
Q119
median24
Q330
95-th percentile43
Maximum318
Range331
Interquartile range (IQR)11

Descriptive statistics

Standard deviation10.637321
Coefficient of variation (CV)0.42290558
Kurtosis41.399932
Mean25.152947
Median Absolute Deviation (MAD)5
Skewness2.9534942
Sum436630
Variance113.15261
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value2.844388657 × 10-23
2024-05-02T03:34:17.564822image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:18.740622image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps0
min0
max0
mean0
std0
2024-05-02T03:34:19.120628image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
24 978
 
5.6%
21 964
 
5.6%
23 961
 
5.5%
22 942
 
5.4%
19 880
 
5.1%
20 869
 
5.0%
25 805
 
4.6%
26 794
 
4.6%
27 771
 
4.4%
18 713
 
4.1%
Other values (91) 8682
50.0%
ValueCountFrequency (%)
-13 1
 
< 0.1%
1 4
 
< 0.1%
2 21
 
0.1%
3 47
 
0.3%
4 253
1.5%
5 28
 
0.2%
6 31
 
0.2%
7 31
 
0.2%
8 25
 
0.1%
9 66
 
0.4%
ValueCountFrequency (%)
318 1
 
< 0.1%
107 8
< 0.1%
106 1
 
< 0.1%
105 1
 
< 0.1%
104 1
 
< 0.1%
103 2
 
< 0.1%
102 4
< 0.1%
101 5
< 0.1%
100 5
< 0.1%
99 6
< 0.1%
2024-05-02T03:34:18.214036image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

PM10
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Particulate Matter (PM10) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).

Distinct751
Distinct (%)4.5%
Missing780
Missing (%)4.5%
Infinite0
Infinite (%)0.0%
Mean11.590983
Minimum-3.8
Maximum437.25
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:19.633963image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-3.8
5-th percentile3.65
Q17.4
median10.65
Q314.5
95-th percentile21.9
Maximum437.25
Range441.05
Interquartile range (IQR)7.1

Descriptive statistics

Standard deviation7.9112508
Coefficient of variation (CV)0.68253496
Kurtosis653.26835
Mean11.590983
Median Absolute Deviation (MAD)3.5
Skewness15.863146
Sum192166.9
Variance62.587889
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value2.738818348 × 10-26
2024-05-02T03:34:19.948052image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:20.929073image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps191
min3 hours
max1 week, 3 days and 8 hours
mean5 hours, 5 minutes and 2.14 seconds
std17 hours, 55 minutes and 51.9 seconds
2024-05-02T03:34:21.545110image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
10.8 81
 
0.5%
10.15 80
 
0.5%
11.2 79
 
0.5%
8.25 78
 
0.4%
10.35 78
 
0.4%
11.45 77
 
0.4%
11 76
 
0.4%
8.2 75
 
0.4%
9.35 74
 
0.4%
8.45 74
 
0.4%
Other values (741) 15807
91.1%
(Missing) 780
 
4.5%
ValueCountFrequency (%)
-3.8 1
< 0.1%
-3 1
< 0.1%
-2.8 1
< 0.1%
-2.55 1
< 0.1%
-2.25 1
< 0.1%
-2 1
< 0.1%
-1.95 1
< 0.1%
-1.85 1
< 0.1%
-1.8 1
< 0.1%
-1.6 2
< 0.1%
ValueCountFrequency (%)
437.25 1
< 0.1%
251 1
< 0.1%
250.3 1
< 0.1%
200.4 1
< 0.1%
161.7 1
< 0.1%
156.5 1
< 0.1%
151.9 1
< 0.1%
110.75 1
< 0.1%
110.25 1
< 0.1%
107.95 1
< 0.1%
2024-05-02T03:34:20.443312image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

PM2.5
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Particulate Matter (PM2.5) Hourly Aggregate: µg/m³ (Micrograms per cubic metre).

Distinct495
Distinct (%)3.1%
Missing1552
Missing (%)8.9%
Infinite0
Infinite (%)0.0%
Mean6.2512748
Minimum0.45
Maximum52.3
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:22.199724image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0.45
5-th percentile2.7
Q14.25
median5.55
Q37.35
95-th percentile11.735
Maximum52.3
Range51.85
Interquartile range (IQR)3.1

Descriptive statistics

Standard deviation3.5070778
Coefficient of variation (CV)0.56101803
Kurtosis25.249437
Mean6.2512748
Median Absolute Deviation (MAD)1.5
Skewness3.6247507
Sum98813.9
Variance12.299595
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value5.108370382 × 10-21
2024-05-02T03:34:22.540967image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:23.646291image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps51
min3 hours
max4 weeks and 17 hours
mean1 day, 7 hours and 25 minutes
std4 days, 5 hours and 40 minutes
2024-05-02T03:34:23.980846image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
4.95 178
 
1.0%
5.4 176
 
1.0%
4.5 172
 
1.0%
4.55 171
 
1.0%
4.9 171
 
1.0%
3.9 168
 
1.0%
4.7 167
 
1.0%
4.35 163
 
0.9%
5.45 163
 
0.9%
4.4 163
 
0.9%
Other values (485) 14115
81.3%
(Missing) 1552
 
8.9%
ValueCountFrequency (%)
0.45 1
 
< 0.1%
0.55 2
 
< 0.1%
0.6 3
 
< 0.1%
0.65 2
 
< 0.1%
0.7 2
 
< 0.1%
0.75 1
 
< 0.1%
0.8 3
 
< 0.1%
0.85 4
< 0.1%
0.9 2
 
< 0.1%
0.95 8
< 0.1%
ValueCountFrequency (%)
52.3 1
< 0.1%
51.9 1
< 0.1%
50.15 1
< 0.1%
49.05 1
< 0.1%
47.45 1
< 0.1%
46.5 1
< 0.1%
45.65 1
< 0.1%
44.75 1
< 0.1%
42.05 1
< 0.1%
41.9 1
< 0.1%
2024-05-02T03:34:23.200742image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

SO2
Unsupported

MISSING  REJECTED  UNSUPPORTED 

Sulfur Dioxide (SO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Missing17359
Missing (%)100.0%
Memory size271.2 KiB

NO
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Nitric Oxide (NO) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct1481
Distinct (%)9.1%
Missing1172
Missing (%)6.8%
Infinite0
Infinite (%)0.0%
Mean12.005912
Minimum-0.8
Maximum352.45
Zeros44
Zeros (%)0.3%
Memory size271.2 KiB
2024-05-02T03:34:24.438921image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-0.8
5-th percentile0.45
Q12.45
median5.85
Q312.2
95-th percentile43.205
Maximum352.45
Range353.25
Interquartile range (IQR)9.75

Descriptive statistics

Standard deviation22.592626
Coefficient of variation (CV)1.8817917
Kurtosis50.006018
Mean12.005912
Median Absolute Deviation (MAD)4.1
Skewness5.9781124
Sum194339.7
Variance510.42674
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value1.553145987 × 10-22
2024-05-02T03:34:24.799972image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:25.813708image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps394
min3 hours
max6 days and 13 hours
mean3 hours, 58 minutes and 29.26 seconds
std9 hours, 18 minutes and 28.29 seconds
2024-05-02T03:34:26.849152image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
0.55 102
 
0.6%
0.65 97
 
0.6%
1.5 94
 
0.5%
1.65 90
 
0.5%
0.75 88
 
0.5%
1.1 87
 
0.5%
0.85 87
 
0.5%
2.4 87
 
0.5%
1.6 87
 
0.5%
2.2 87
 
0.5%
Other values (1471) 15281
88.0%
(Missing) 1172
 
6.8%
ValueCountFrequency (%)
-0.8 1
 
< 0.1%
-0.65 1
 
< 0.1%
-0.6 2
 
< 0.1%
-0.5 8
 
< 0.1%
-0.45 8
 
< 0.1%
-0.4 7
 
< 0.1%
-0.35 13
0.1%
-0.3 17
0.1%
-0.25 23
0.1%
-0.2 22
0.1%
ValueCountFrequency (%)
352.45 1
< 0.1%
344.1 1
< 0.1%
321.25 1
< 0.1%
321.05 1
< 0.1%
310.3 1
< 0.1%
302.05 1
< 0.1%
283.65 1
< 0.1%
274.5 1
< 0.1%
273.2 1
< 0.1%
267.1 1
< 0.1%
2024-05-02T03:34:25.345327image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

NO2
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Nitrogen Dioxide (NO2) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct1037
Distinct (%)6.4%
Missing1174
Missing (%)6.8%
Infinite0
Infinite (%)0.0%
Mean0.012416345
Minimum-0.0005
Maximum0.0721
Zeros41
Zeros (%)0.2%
Memory size271.2 KiB
2024-05-02T03:34:27.887130image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-0.0005
5-th percentile0.00095
Q10.004
median0.0091
Q30.0177
95-th percentile0.03525
Maximum0.0721
Range0.0726
Interquartile range (IQR)0.0137

Descriptive statistics

Standard deviation0.010950926
Coefficient of variation (CV)0.88197658
Kurtosis1.5221271
Mean0.012416345
Median Absolute Deviation (MAD)0.006
Skewness1.3192932
Sum200.95855
Variance0.00011992278
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value2.337068916 × 10-15
2024-05-02T03:34:28.213458image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:29.295060image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps395
min3 hours
max6 days and 13 hours
mean3 hours, 58 minutes and 20.49 seconds
std9 hours, 17 minutes and 46.12 seconds
2024-05-02T03:34:30.368079image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
0.00255 73
 
0.4%
0.00315 72
 
0.4%
0.00285 65
 
0.4%
0.00245 64
 
0.4%
0.00345 64
 
0.4%
0.0025 62
 
0.4%
0.00235 62
 
0.4%
0.006 62
 
0.4%
0.0016 61
 
0.4%
0.00295 61
 
0.4%
Other values (1027) 15539
89.5%
(Missing) 1174
 
6.8%
ValueCountFrequency (%)
-0.0005 1
 
< 0.1%
-0.00045 1
 
< 0.1%
-0.0004 4
 
< 0.1%
-0.00035 3
 
< 0.1%
-0.0003 5
 
< 0.1%
-0.00025 14
 
0.1%
-0.0002 27
0.2%
-0.00015 35
0.2%
-0.0001 40
0.2%
-5 × 10-549
0.3%
ValueCountFrequency (%)
0.0721 1
< 0.1%
0.06845 1
< 0.1%
0.06095 1
< 0.1%
0.0609 1
< 0.1%
0.06085 1
< 0.1%
0.06035 1
< 0.1%
0.0602 1
< 0.1%
0.0596 1
< 0.1%
0.05925 1
< 0.1%
0.0589 1
< 0.1%
2024-05-02T03:34:28.789462image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

NOx
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Nitrogen Oxide (NOx) Hourly Aggregate: µg/m³ (Micrograms per cubic metre)

Distinct2094
Distinct (%)12.9%
Missing1172
Missing (%)6.8%
Infinite0
Infinite (%)0.0%
Mean24.203614
Minimum-0.7
Maximum401.95
Zeros26
Zeros (%)0.1%
Memory size271.2 KiB
2024-05-02T03:34:31.463477image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum-0.7
5-th percentile1.55
Q17.05
median15.1
Q329.4
95-th percentile76.15
Maximum401.95
Range402.65
Interquartile range (IQR)22.35

Descriptive statistics

Standard deviation30.662867
Coefficient of variation (CV)1.2668714
Kurtosis25.087571
Mean24.203614
Median Absolute Deviation (MAD)9.75
Skewness4.0051517
Sum391783.9
Variance940.21142
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value7.145833349 × 10-19
2024-05-02T03:34:31.783654image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:32.928818image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps394
min3 hours
max6 days and 13 hours
mean3 hours, 58 minutes and 29.26 seconds
std9 hours, 18 minutes and 28.29 seconds
2024-05-02T03:34:33.910879image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
5.75 45
 
0.3%
2.05 41
 
0.2%
2.55 41
 
0.2%
8.55 40
 
0.2%
8.15 39
 
0.2%
3.2 39
 
0.2%
3 38
 
0.2%
3.55 38
 
0.2%
3.3 38
 
0.2%
2.95 38
 
0.2%
Other values (2084) 15790
91.0%
(Missing) 1172
 
6.8%
ValueCountFrequency (%)
-0.7 1
 
< 0.1%
-0.55 1
 
< 0.1%
-0.5 1
 
< 0.1%
-0.45 7
 
< 0.1%
-0.4 5
 
< 0.1%
-0.35 9
0.1%
-0.3 12
0.1%
-0.25 11
0.1%
-0.2 17
0.1%
-0.15 20
0.1%
ValueCountFrequency (%)
401.95 1
< 0.1%
380.85 1
< 0.1%
373.25 1
< 0.1%
371.2 1
< 0.1%
362.4 1
< 0.1%
359.45 1
< 0.1%
325.85 1
< 0.1%
317.75 1
< 0.1%
312.95 1
< 0.1%
311.15 1
< 0.1%
2024-05-02T03:34:32.475500image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Wind_Speed
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Wind Speed Hourly Aggregate: m/s (Metres per second)

Distinct149
Distinct (%)0.9%
Missing586
Missing (%)3.4%
Infinite0
Infinite (%)0.0%
Mean2.5017916
Minimum0.2
Maximum7.8
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:35.998887image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum0.2
5-th percentile0.6
Q11.25
median2.3
Q33.5
95-th percentile5.25
Maximum7.8
Range7.6
Interquartile range (IQR)2.25

Descriptive statistics

Standard deviation1.4684648
Coefficient of variation (CV)0.58696528
Kurtosis-0.20594329
Mean2.5017916
Median Absolute Deviation (MAD)1.1
Skewness0.63330244
Sum41962.55
Variance2.1563888
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value3.892911556 × 10-23
2024-05-02T03:34:36.379478image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:37.418531image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps44
min3 hours
max1 week, 3 days and 8 hours
mean14 hours, 19 minutes and 5.91 seconds
std1 day, 17 hours and 36 minutes
2024-05-02T03:34:37.733091image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
0.7 283
 
1.6%
0.8 277
 
1.6%
0.75 275
 
1.6%
0.85 270
 
1.6%
1 264
 
1.5%
0.95 259
 
1.5%
0.9 258
 
1.5%
1.05 252
 
1.5%
0.6 242
 
1.4%
0.65 242
 
1.4%
Other values (139) 14151
81.5%
(Missing) 586
 
3.4%
ValueCountFrequency (%)
0.2 3
 
< 0.1%
0.25 16
 
0.1%
0.3 40
 
0.2%
0.35 83
 
0.5%
0.4 106
0.6%
0.45 149
0.9%
0.5 184
1.1%
0.55 204
1.2%
0.6 242
1.4%
0.65 242
1.4%
ValueCountFrequency (%)
7.8 1
 
< 0.1%
7.6 1
 
< 0.1%
7.5 1
 
< 0.1%
7.45 3
 
< 0.1%
7.4 3
 
< 0.1%
7.35 2
 
< 0.1%
7.3 1
 
< 0.1%
7.25 4
< 0.1%
7.2 8
< 0.1%
7.15 4
< 0.1%
2024-05-02T03:34:36.968162image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Wind_Dir
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Wind Direction Hourly Aggregate: ° (Degrees)

Distinct656
Distinct (%)3.9%
Missing588
Missing (%)3.4%
Infinite0
Infinite (%)0.0%
Mean176.33513
Minimum5.5
Maximum346.5
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:38.158175image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum5.5
5-th percentile36.25
Q175.5
median205
Q3261
95-th percentile293
Maximum346.5
Range341
Interquartile range (IQR)185.5

Descriptive statistics

Standard deviation93.196025
Coefficient of variation (CV)0.52851649
Kurtosis-1.4897823
Mean176.33513
Median Absolute Deviation (MAD)72
Skewness-0.27770661
Sum2957316.5
Variance8685.4991
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value5.523234394 × 10-21
2024-05-02T03:34:38.522997image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:39.877857image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps45
min3 hours
max1 week, 3 days and 8 hours
mean14 hours and 4 minutes
std1 day, 17 hours and 9 minutes
2024-05-02T03:34:40.293772image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
266.5 84
 
0.5%
268.5 83
 
0.5%
267 80
 
0.5%
263 80
 
0.5%
265 78
 
0.4%
273 78
 
0.4%
257 77
 
0.4%
265.5 76
 
0.4%
261 74
 
0.4%
266 72
 
0.4%
Other values (646) 15989
92.1%
(Missing) 588
 
3.4%
ValueCountFrequency (%)
5.5 1
 
< 0.1%
6.5 1
 
< 0.1%
7 1
 
< 0.1%
7.5 1
 
< 0.1%
8 2
 
< 0.1%
8.5 1
 
< 0.1%
9.5 1
 
< 0.1%
10 5
< 0.1%
10.5 3
< 0.1%
11 4
< 0.1%
ValueCountFrequency (%)
346.5 1
 
< 0.1%
340.5 1
 
< 0.1%
339.5 1
 
< 0.1%
336.5 2
< 0.1%
336 1
 
< 0.1%
335.5 1
 
< 0.1%
335 1
 
< 0.1%
334.5 3
< 0.1%
331.5 3
< 0.1%
331 2
< 0.1%
2024-05-02T03:34:39.298985image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Air_Temp
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Air Temperature Hourly Aggregate: °C (Celsius)

Distinct48
Distinct (%)0.3%
Missing574
Missing (%)3.3%
Infinite0
Infinite (%)0.0%
Mean16.280548
Minimum3.5
Maximum27
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:40.752241image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum3.5
5-th percentile9.6
Q113.5
median16
Q319.5
95-th percentile22.5
Maximum27
Range23.5
Interquartile range (IQR)6

Descriptive statistics

Standard deviation3.9599618
Coefficient of variation (CV)0.24323271
Kurtosis-0.44748261
Mean16.280548
Median Absolute Deviation (MAD)3
Skewness-0.14746909
Sum273269
Variance15.681298
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value0.0002585377706
2024-05-02T03:34:41.094650image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=48)
2024-05-02T03:34:42.172386image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps41
min3 hours
max1 week, 3 days and 8 hours
mean15 hours
std1 day, 19 hours and 3 minutes
2024-05-02T03:34:42.474067image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
15 1017
 
5.9%
14 1012
 
5.8%
20 905
 
5.2%
16 854
 
4.9%
19 820
 
4.7%
13 775
 
4.5%
17 769
 
4.4%
18 765
 
4.4%
21 637
 
3.7%
15.5 618
 
3.6%
Other values (38) 8613
49.6%
ValueCountFrequency (%)
3.5 1
 
< 0.1%
4 22
 
0.1%
4.5 11
 
0.1%
5 24
 
0.1%
5.5 15
 
0.1%
6 30
 
0.2%
6.5 31
 
0.2%
7 70
0.4%
7.5 60
0.3%
8 102
0.6%
ValueCountFrequency (%)
27 2
 
< 0.1%
26.5 2
 
< 0.1%
26 14
 
0.1%
25.5 26
 
0.1%
25 47
 
0.3%
24.5 58
 
0.3%
24 142
0.8%
23.5 127
0.7%
23 313
1.8%
22.5 236
1.4%
2024-05-02T03:34:41.704084image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Rel_Humidity
Numeric time series

MISSING  NON STATIONARY  SEASONAL 

Relative Humidity Hourly Aggregate: % (Percent)

Distinct1036
Distinct (%)6.1%
Missing438
Missing (%)2.5%
Infinite0
Infinite (%)0.0%
Mean69.909931
Minimum30.4
Maximum90.35
Zeros0
Zeros (%)0.0%
Memory size271.2 KiB
2024-05-02T03:34:42.855840image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum30.4
5-th percentile48.9
Q161.25
median71.05
Q379.85
95-th percentile86.55
Maximum90.35
Range59.95
Interquartile range (IQR)18.6

Descriptive statistics

Standard deviation11.804317
Coefficient of variation (CV)0.16885036
Kurtosis-0.70954466
Mean69.909931
Median Absolute Deviation (MAD)9.2
Skewness-0.3925148
Sum1182945.9
Variance139.34191
MonotonicityNot monotonic
Augmented Dickey-Fuller test p-value3.099069947 × 10-17
2024-05-02T03:34:43.159320image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
2024-05-02T03:34:44.154897image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Gap statistics

number of gaps37
min3 hours
max1 week, 3 days and 8 hours
mean12 hours, 50 minutes and 16.43 seconds
std1 day, 16 hours and 51 minutes
2024-05-02T03:34:44.475119image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
84.2 39
 
0.2%
79.95 36
 
0.2%
81.65 36
 
0.2%
80.3 36
 
0.2%
77.75 35
 
0.2%
82.55 35
 
0.2%
74 34
 
0.2%
84.15 34
 
0.2%
82.7 34
 
0.2%
81 34
 
0.2%
Other values (1026) 16568
95.4%
(Missing) 438
 
2.5%
ValueCountFrequency (%)
30.4 1
< 0.1%
32 1
< 0.1%
32.05 1
< 0.1%
32.65 1
< 0.1%
33.15 1
< 0.1%
34.4 1
< 0.1%
34.8 1
< 0.1%
35.45 1
< 0.1%
35.6 1
< 0.1%
36.2 1
< 0.1%
ValueCountFrequency (%)
90.35 1
 
< 0.1%
90.15 2
< 0.1%
89.95 1
 
< 0.1%
89.9 1
 
< 0.1%
89.85 4
< 0.1%
89.8 3
< 0.1%
89.75 4
< 0.1%
89.7 3
< 0.1%
89.65 2
< 0.1%
89.6 4
< 0.1%
2024-05-02T03:34:43.730775image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ACF and PACF

Site
Categorical

CONSTANT 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size1.2 MiB
Takapuna
17359 

Length

Max length8
Median length8
Mean length8
Min length8

Characters and Unicode

Total characters138872
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowTakapuna
2nd rowTakapuna
3rd rowTakapuna
4th rowTakapuna
5th rowTakapuna

Common Values

ValueCountFrequency (%)
Takapuna 17359
100.0%

Length

2024-05-02T03:34:44.910157image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-05-02T03:34:45.309579image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
takapuna 17359
100.0%

Most occurring characters

ValueCountFrequency (%)
a 52077
37.5%
T 17359
 
12.5%
k 17359
 
12.5%
p 17359
 
12.5%
u 17359
 
12.5%
n 17359
 
12.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 138872
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 52077
37.5%
T 17359
 
12.5%
k 17359
 
12.5%
p 17359
 
12.5%
u 17359
 
12.5%
n 17359
 
12.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 138872
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 52077
37.5%
T 17359
 
12.5%
k 17359
 
12.5%
p 17359
 
12.5%
u 17359
 
12.5%
n 17359
 
12.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 138872
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 52077
37.5%
T 17359
 
12.5%
k 17359
 
12.5%
p 17359
 
12.5%
u 17359
 
12.5%
n 17359
 
12.5%

Site_Class
Categorical

CONSTANT 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size1.3 MiB
Urban Background
17359 

Length

Max length16
Median length16
Mean length16
Min length16

Characters and Unicode

Total characters277744
Distinct characters13
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowUrban Background
2nd rowUrban Background
3rd rowUrban Background
4th rowUrban Background
5th rowUrban Background

Common Values

ValueCountFrequency (%)
Urban Background 17359
100.0%

Length

2024-05-02T03:34:45.573192image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-05-02T03:34:45.896000image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
urban 17359
50.0%
background 17359
50.0%

Most occurring characters

ValueCountFrequency (%)
r 34718
12.5%
a 34718
12.5%
n 34718
12.5%
U 17359
 
6.2%
b 17359
 
6.2%
17359
 
6.2%
B 17359
 
6.2%
c 17359
 
6.2%
k 17359
 
6.2%
g 17359
 
6.2%
Other values (3) 52077
18.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 277744
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
r 34718
12.5%
a 34718
12.5%
n 34718
12.5%
U 17359
 
6.2%
b 17359
 
6.2%
17359
 
6.2%
B 17359
 
6.2%
c 17359
 
6.2%
k 17359
 
6.2%
g 17359
 
6.2%
Other values (3) 52077
18.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 277744
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
r 34718
12.5%
a 34718
12.5%
n 34718
12.5%
U 17359
 
6.2%
b 17359
 
6.2%
17359
 
6.2%
B 17359
 
6.2%
c 17359
 
6.2%
k 17359
 
6.2%
g 17359
 
6.2%
Other values (3) 52077
18.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 277744
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
r 34718
12.5%
a 34718
12.5%
n 34718
12.5%
U 17359
 
6.2%
b 17359
 
6.2%
17359
 
6.2%
B 17359
 
6.2%
c 17359
 
6.2%
k 17359
 
6.2%
g 17359
 
6.2%
Other values (3) 52077
18.8%

Country
Categorical

CONSTANT 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size1.3 MiB
New Zealand
17359 

Length

Max length11
Median length11
Mean length11
Min length11

Characters and Unicode

Total characters190949
Distinct characters9
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowNew Zealand
2nd rowNew Zealand
3rd rowNew Zealand
4th rowNew Zealand
5th rowNew Zealand

Common Values

ValueCountFrequency (%)
New Zealand 17359
100.0%

Length

2024-05-02T03:34:46.043586image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2024-05-02T03:34:46.257251image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
ValueCountFrequency (%)
new 17359
50.0%
zealand 17359
50.0%

Most occurring characters

ValueCountFrequency (%)
e 34718
18.2%
a 34718
18.2%
N 17359
9.1%
w 17359
9.1%
17359
9.1%
Z 17359
9.1%
l 17359
9.1%
n 17359
9.1%
d 17359
9.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 190949
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 34718
18.2%
a 34718
18.2%
N 17359
9.1%
w 17359
9.1%
17359
9.1%
Z 17359
9.1%
l 17359
9.1%
n 17359
9.1%
d 17359
9.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 190949
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 34718
18.2%
a 34718
18.2%
N 17359
9.1%
w 17359
9.1%
17359
9.1%
Z 17359
9.1%
l 17359
9.1%
n 17359
9.1%
d 17359
9.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 190949
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 34718
18.2%
a 34718
18.2%
N 17359
9.1%
w 17359
9.1%
17359
9.1%
Z 17359
9.1%
l 17359
9.1%
n 17359
9.1%
d 17359
9.1%

Interactions

2024-05-02T03:34:09.991646image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:49.731051image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:51.837447image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:53.885001image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:56.023982image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:58.994648image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:01.148424image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:03.410858image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:05.626307image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:07.856705image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:10.197156image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:49.944707image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:52.031553image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:54.124393image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:56.926234image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:59.237137image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:01.393560image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:03.657396image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:05.826803image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:08.085316image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:10.380301image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:50.141609image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:52.211070image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:54.305005image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:57.125268image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:59.424510image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:01.581124image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:03.850352image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:06.031753image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:08.271425image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:10.582562image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:50.371491image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:52.427970image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:54.509106image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:57.374360image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:59.647227image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:01.786880image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:04.086570image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:06.224518image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:08.500836image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:10.800695image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:50.559322image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:52.630122image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:54.700856image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:57.613358image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:59.846950image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:02.050507image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:04.376198image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:06.477985image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:08.721833image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:11.003558image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:50.759924image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:52.821040image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:54.907294image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:57.878014image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:00.068438image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:02.295070image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:04.587178image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:06.693303image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:08.915305image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:11.213438image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:50.962359image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:53.011750image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:55.113355image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:58.132705image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:00.288342image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:02.558085image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:04.795509image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:06.950768image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:09.167690image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:11.420029image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:51.186178image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:53.259269image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:55.355226image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:58.360048image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:00.500194image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:02.785304image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:04.996994image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:07.172422image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:09.418979image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:11.618710image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:51.396005image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:53.444980image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:55.597676image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:58.570899image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:00.721220image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:03.003417image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:05.208960image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:07.411862image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:09.617114image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:11.851046image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:51.626629image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:53.635813image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:55.818485image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:33:58.770843image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:00.934937image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:03.207660image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:05.416760image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:07.616551image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
2024-05-02T03:34:09.804110image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/

Missing values

2024-05-02T03:34:12.180696image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
A simple visualization of nullity by column.
2024-05-02T03:34:12.564186image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2024-05-02T03:34:12.930064image/svg+xmlMatplotlib v3.5.2, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

TimestampAQIPM10PM2.5SO2NONO2NOxWind_SpeedWind_DirAir_TempRel_HumiditySiteSite_ClassCountry
2020-05-07 17:00:002020-05-07 17:00:0021.05.954.15NaN10.900.0171528.002.50242.015.568.15TakapunaUrban BackgroundNew Zealand
2020-05-07 18:00:002020-05-07 18:00:0021.05.655.10NaN8.200.0165524.702.20239.515.561.75TakapunaUrban BackgroundNew Zealand
2020-05-07 19:00:002020-05-07 19:00:0021.07.705.45NaN5.750.0132519.002.10244.015.059.45TakapunaUrban BackgroundNew Zealand
2020-05-07 20:00:002020-05-07 20:00:0021.08.205.45NaN3.500.0087012.202.25251.015.059.25TakapunaUrban BackgroundNew Zealand
2020-05-07 21:00:002020-05-07 21:00:0021.011.805.80NaN3.550.0093012.902.10261.015.061.75TakapunaUrban BackgroundNew Zealand
2020-05-07 22:00:002020-05-07 22:00:0020.011.055.95NaN3.750.0109514.802.05274.015.063.40TakapunaUrban BackgroundNew Zealand
2020-05-07 23:00:002020-05-07 23:00:0019.09.105.30NaN3.000.0100013.051.85273.014.563.95TakapunaUrban BackgroundNew Zealand
2020-05-08 00:00:002020-05-08 00:00:0019.012.054.20NaN1.900.005857.751.90258.014.067.35TakapunaUrban BackgroundNew Zealand
2020-05-08 01:00:002020-05-08 01:00:0019.012.652.90NaN1.000.002753.752.30253.514.074.65TakapunaUrban BackgroundNew Zealand
2020-05-08 02:00:002020-05-08 02:00:0018.06.002.50NaN1.350.002603.952.50260.014.079.10TakapunaUrban BackgroundNew Zealand
TimestampAQIPM10PM2.5SO2NONO2NOxWind_SpeedWind_DirAir_TempRel_HumiditySiteSite_ClassCountry
2022-04-30 14:00:002022-04-30 14:00:0015.07.553.00NaN1.100.003254.453.85117.518.065.35TakapunaUrban BackgroundNew Zealand
2022-04-30 15:00:002022-04-30 15:00:0015.08.302.70NaN1.100.003254.403.85117.517.568.30TakapunaUrban BackgroundNew Zealand
2022-04-30 16:00:002022-04-30 16:00:0014.05.352.55NaN1.200.003905.103.40115.017.070.15TakapunaUrban BackgroundNew Zealand
2022-04-30 17:00:002022-04-30 17:00:0014.05.852.85NaN1.050.004705.703.10117.016.572.45TakapunaUrban BackgroundNew Zealand
2022-04-30 18:00:002022-04-30 18:00:0014.05.903.25NaN0.750.005055.752.80119.516.076.05TakapunaUrban BackgroundNew Zealand
2022-04-30 19:00:002022-04-30 19:00:0014.04.753.30NaN0.600.004405.002.55109.516.076.05TakapunaUrban BackgroundNew Zealand
2022-04-30 20:00:002022-04-30 20:00:0014.06.353.15NaN0.500.003654.152.45105.516.074.50TakapunaUrban BackgroundNew Zealand
2022-04-30 21:00:002022-04-30 21:00:0014.06.052.80NaN0.400.004805.202.35115.516.074.15TakapunaUrban BackgroundNew Zealand
2022-04-30 22:00:002022-04-30 22:00:0013.04.202.60NaN0.400.005555.901.95122.516.075.95TakapunaUrban BackgroundNew Zealand
2022-04-30 23:00:002022-04-30 23:00:0013.05.002.80NaN0.350.004054.301.95119.016.078.00TakapunaUrban BackgroundNew Zealand