Skip to main content

๐Ÿ“š References

Unlock the potential of AI ๐Ÿš€

๐ŸŒŸ Curated collection of Analytics, Data Science, Machine Learning and Deep Learning papers, reviews and articles that are on must read list. โ›…๏ธ

READ THIS

๐Ÿ‘ˆ

Teradataโ€‹

Data Scienceโ€‹

๐Ÿ“Š Pre-processing & EDAโ€‹

๐Ÿฅ‡ ๐Ÿ“„Data preprocessing - Tidy data - by Hadley Wickham

๐Ÿ““ General DSโ€‹

๐Ÿฅ‡ ๐Ÿ“„ Statistical Modeling: The Two Cultures - by Leo Breiman

๐Ÿฅˆ ๐Ÿ“„ A study in Rashomon curves and volumes: A new perspective on generalization and model simplicity in machine learning

๐Ÿฅ‡ ๐Ÿ“„ Frequentism and Bayesianism: A Python-driven Primer by Jake VanderPlas


Machine Learningโ€‹

๐ŸŽฏ General MLโ€‹

๐Ÿฅ‡ ๐Ÿ“„ Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning - by Sebastian Raschka

๐Ÿฅ‡ ๐Ÿ“„ A Brief Introduction into Machine Learning - by Gunnar Ratsch

๐Ÿฅ‰ ๐Ÿ“„ An Introduction to the Conjugate Gradient Method Without the Agonizing Pain - by Jonathan Richard Shewchuk

๐Ÿฅ‰ ๐Ÿ“„ On Model Stability as a Function of Random Seed

๐Ÿ” Outlier/Anomaly detectionโ€‹

๐Ÿฅ‡ ๐Ÿ“ฐ Outlier Detection : A Survey

๐Ÿš€ Boostingโ€‹

๐Ÿฅˆ ๐Ÿ“„ XGBoost: A Scalable Tree Boosting System

๐Ÿฅˆ ๐Ÿ“„ LightGBM: A Highly Efficient Gradient BoostingDecision Tree

๐Ÿฅˆ ๐Ÿ“„ AdaBoost and the Super Bowl of Classifiers - A Tutorial Introduction to Adaptive Boosting

๐Ÿฅ‰ ๐Ÿ“„ Greedy Function Approximation: A Gradient Boosting Machine

:book: Unraveling Blackbox MLโ€‹

๐Ÿฅ‰ ๐Ÿ“„ Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation

๐Ÿฅ‰ ๐Ÿ“„ Data Shapley: Equitable Valuation of Data for Machine Learning

โœ‚๏ธ Dimensionality Reductionโ€‹

๐Ÿฅ‡ ๐Ÿ“„ A Tutorial on Principal Component Analysis

๐Ÿฅˆ ๐Ÿ“„ How to Use t-SNE Effectively

๐Ÿฅ‰ ๐Ÿ“„ Visualizing Data using t-SNE

๐Ÿ“ˆ Optimizationโ€‹

๐Ÿฅ‡ ๐Ÿ“„ A Tutorial on Bayesian Optimization

๐Ÿฅˆ ๐Ÿ“„ Taking the Human Out of the Loop: A review of Bayesian Optimization


Famous Blogsโ€‹

Sebastian Raschka Chip Huyen


๐ŸŽฑ ๐Ÿ”ฎ Recommendersโ€‹

Surveysโ€‹

๐Ÿฅ‡ ๐Ÿ“„ A Survey of Collaborative Filtering Techniques

๐Ÿฅ‡ ๐Ÿ“„ Collaborative Filtering Recommender Systems

๐Ÿฅ‡ ๐Ÿ“„ Deep Learning Based Recommender System: A Survey and New Perspectives

๐Ÿฅ‡ ๐Ÿ“„ ๐Ÿค” โญ Explainable Recommendation: A Survey and New Perspectives โญ

Case Studiesโ€‹

๐Ÿฅˆ ๐Ÿ“„ The Netflix Recommender System: Algorithms, Business Value,and Innovation

๐Ÿฅˆ ๐Ÿ“„ Two Decades of Recommender Systems at Amazon.com

๐Ÿฅˆ ๐ŸŒ How Does Spotify Know You So Well?

๐Ÿ‘‰ More In-Depth study, ๐Ÿ“• Recommender Systems Handbook


Famous Deep Learning Blogs ๐Ÿค โ€‹

๐ŸŒ Stanford UFLDL Deep Learning Tutorial

๐ŸŒ Distill.pub

๐ŸŒ Colah's Blog

๐ŸŒ Andrej Karpathy

๐ŸŒ Zack Lipton

๐ŸŒ Sebastian Ruder

๐ŸŒ Jay Alammar


๐Ÿ“š Neural Networks and Deep Learning Neural Networksโ€‹

โญ ๐Ÿฅ‡ ๐Ÿ“ฐ The Matrix Calculus You Need For Deep Learning - Terence Parr and Jeremy Howard โญ

๐Ÿฅ‡ ๐Ÿ“ฐ Deep learning -Yann LeCun, Yoshua Bengio & Geoffrey Hinton

๐Ÿฅ‡ ๐Ÿ“„ Generalization in Deep Learning

๐Ÿฅ‡ ๐Ÿ“„ Topology of Learning in Artificial Neural Networks

๐Ÿฅ‡ ๐Ÿ“„ Dropout: A Simple Way to Prevent Neural Networks from Overfitting

๐Ÿฅˆ ๐Ÿ“„ Polynomial Regression As an Alternative to Neural Nets

๐Ÿฅˆ ๐ŸŒ The Neural Network Zoo

๐Ÿฅˆ ๐ŸŒ Image Completion with Deep Learning in TensorFlow

๐Ÿฅˆ ๐Ÿ“„ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

๐Ÿฅ‰ ๐Ÿ“„ A systematic study of the class imbalance problem in convolutional neural networks

๐Ÿฅ‰ ๐Ÿ“„ All Neural Networks are Created Equal

๐Ÿฅ‰ ๐Ÿ“„ Adam: A Method for Stochastic Optimization

๐Ÿฅ‰ ๐Ÿ“„ AutoML: A Survey of the State-of-the-Art

๐Ÿ–ผ CNNsโ€‹

๐Ÿฅ‡ ๐Ÿ“„ Visualizing and Understanding Convolutional Networks -by Andrej Karpathy Justin Johnson Li Fei-Fei

๐Ÿฅˆ ๐Ÿ“„ Deep Residual Learning for Image Recognition

๐Ÿฅˆ ๐Ÿ“„AlexNet-ImageNet Classification with Deep Convolutional Neural Networks

๐Ÿฅˆ ๐Ÿ“„VGG Net-VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

๐Ÿฅ‰ ๐Ÿ“„ A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction

๐Ÿฅ‰ ๐Ÿ“„ Large-scale Video Classification with Convolutional Neural Networks

๐Ÿฅ‰ ๐Ÿ“„ Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

โšซ CapsNet ๐Ÿ”ฑโ€‹

๐Ÿฅ‡ ๐Ÿ“„ Dynamic Routing Between Capsules

๐Ÿž ๐Ÿ’ฌ Image Captioningโ€‹

๐Ÿฅ‡ ๐Ÿ“„ Show and Tell: A Neural Image Caption Generator

๐Ÿฅˆ ๐Ÿ“„ Neural Machine Translation by Jointly Learning to Align and Translate

๐Ÿฅˆ ๐Ÿ“„ StyleNet: Generating Attractive Visual Captions with Styles

๐Ÿฅˆ ๐Ÿ“„ Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

๐Ÿฅˆ ๐Ÿ“„ Where to put the Image in an Image Caption Generator

๐Ÿฅˆ ๐Ÿ“„ Dank Learning: Generating Memes Using Deep Neural Networks

:car: ๐Ÿšถ Object Detection ๐Ÿฆ… ๐Ÿˆโ€‹

๐Ÿฅˆ ๐Ÿ“„ResNet-Deep Residual Learning for Image Recognition

๐Ÿฅˆ ๐Ÿ“„ YOLO-You Only Look Once: Unified, Real-Time Object Detection

๐Ÿฅˆ ๐Ÿ“„ Microsoft COCO: Common Objects in Context

๐Ÿฅˆ ๐Ÿ“„ (R-CNN) Rich feature hierarchies for accurate object detection and semantic segmentation

๐Ÿฅˆ ๐Ÿ“„ Fast R-CNN

๐Ÿฅˆ ๐Ÿ“„ Faster R-CNN

๐Ÿฅˆ ๐Ÿ“„ Mask R-CNN

:car: ๐Ÿšถ ๐Ÿ‘ซ Pose Detection :runner: ๐Ÿ’ƒโ€‹

๐Ÿฅˆ ๐Ÿ“„ DensePose: Dense Human Pose Estimation In The Wild

๐Ÿฅˆ ๐Ÿ“„ Parsing R-CNN for Instance-Level Human Analysis

๐Ÿ”ก ๐Ÿ”ฃ Deep NLP ๐Ÿ’ฑ ๐Ÿ”ขโ€‹

๐Ÿฅ‡ ๐Ÿ“„ A Primer on Neural Network Models for Natural Language Processing

๐Ÿฅ‡ ๐Ÿ“„ Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling

๐Ÿฅ‡ ๐Ÿ“„ On the Properties of Neural Machine Translation: Encoderโ€“Decoder Approaches

๐Ÿฅ‡ ๐Ÿ“„ LSTM: A Search Space Odyssey - by Klaus Greff et al.

๐Ÿฅ‡ ๐Ÿ“„ A Critical Review of Recurrent Neural Networksfor Sequence Learning

๐Ÿฅ‡ ๐Ÿ“„ Visualizing and Understanding Recurrent Networks

โญ ๐Ÿฅ‡ ๐Ÿ“„ Attention Is All You Need โญ

๐Ÿฅ‡ ๐Ÿ“„ An Empirical Exploration of Recurrent Network Architectures

๐Ÿฅ‡ ๐Ÿ“„ Open AI (GPT-2) Language Models are Unsupervised Multitask Learners

๐Ÿฅ‡ ๐Ÿ“„ BERT: Pre-training of Deep Bidirectional Transformers forLanguage Understanding

๐Ÿฅ‰ ๐Ÿ“„ Parameter-Efficient Transfer Learning for NLP

๐Ÿฅ‰ ๐Ÿ“„ A Sensitivity Analysis of (and Practitionersโ€™ Guide to) ConvolutionalNeural Networks for Sentence Classification

๐Ÿฅ‰ ๐Ÿ“„ A Survey on Recent Advances in Named Entity Recognition from Deep Learning models

๐Ÿฅ‰ ๐Ÿ“„ Convolutional Neural Networks for Sentence Classification

๐Ÿฅ‰ ๐Ÿ“„ Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction

๐Ÿฅ‰ ๐Ÿ“„ Single Headed Attention RNN: Stop Thinking With Your Head

๐Ÿ‘ฝ GANsโ€‹

๐Ÿฅ‡ ๐Ÿ“„ Generative Adversarial Nets - Goodfellow et al.

๐Ÿ“š GAN Rabbit Hole -> GAN Papers

โญ•โž–โญ• GNNs (Graph Neural Networks)โ€‹

๐Ÿฅ‰ ๐Ÿ“„ A Comprehensive Survey on Graph Neural Networks


๐Ÿ‘จโ€โš•๏ธ ๐Ÿ’‰ Medical AI ๐Ÿ’Š ๐Ÿ”ฌโ€‹

Machine learning classifiers and fMRI: a tutorial overview - by Francisco et al.


๐Ÿ‘‡ Cool Stuff ๐Ÿ‘‡โ€‹

๐Ÿ”Š ๐Ÿ“„ SoundNet: Learning Sound Representations from Unlabeled Video

๐ŸŽจ ๐Ÿ“„ CAN: Creative Adversarial NetworksGenerating โ€œArtโ€ by Learning About Styles andDeviating from Style Norms

๐ŸŽจ ๐Ÿ“„ Deep Painterly Harmonization

๐Ÿ•บ ๐Ÿ’ƒ ๐Ÿ“„ Everybody Dance Now

โšฝ Soccer on Your Tabletop

๐Ÿ‘ฑโ€โ™€๏ธ ๐Ÿ’‡ ๐Ÿ“„ SC-FEGAN: Face Editing Generative Adversarial Network with User's Sketch and Color

๐Ÿ“ธ ๐Ÿ“„ Handheld Mobile Photography in Very Low Light

๐Ÿฏ ๐Ÿ•Œ ๐Ÿ“„ Learning Deep Features for Scene Recognitionusing Places Database

๐Ÿš… ๐Ÿš„ ๐Ÿ“„ High-Speed Tracking withKernelized Correlation Filters

๐ŸŽฌ ๐Ÿ“„ Recent progress in semantic image segmentation

Rabbit hole -> ๐Ÿ”Š ๐ŸŒ Analytics Vidhya Top 10 Audio Processing Tasks and their papers

๐Ÿ‘ฑ -> ๐Ÿ‘ด ๐Ÿ“„ ๐Ÿ“„ Face Aging With Condintional GANS

๐Ÿ‘ฑ -> ๐Ÿ‘ด ๐Ÿ“„ ๐Ÿ“„ Dual Conditional GANs for Face Aging and Rejuvenation

โš– ๐Ÿ“„ BAGAN: Data Augmentation with Balancing GAN

labml.ai Annotated PyTorch Paper Implementations


๐Ÿ“ฐ Cap Stone Projects ๐Ÿ“ฐโ€‹

8 Awesome Data Science Capstone Projects

10 Powerful Applications of Linear Algebra in Data Science

Top 5 Interesting Applications of GANs

Deep Learning Applications a beginner can build in minutes